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Importance of electron-electron interactions in the RKKY coupling in graphene
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We show that the carrier-mediated exchange interaction, the so-called Ruderman-Kittel-Kasuya-Yoshida
(RKKY) coupling, between two magnetic impurity moments in graphene is significantly modified in the
presence of electron-electron (el-el) interactions. Within the mean-field approximation of the Hubbard-U model
we show that for increasing el-el interactions the oscillations disappear and the power-law decay becomes more
long ranged. In zigzag graphene nanoribbons the effects are even more striking with any finite U rendering the
RKKY coupling distance independent. Since the RKKY coupling is directly proportional to the magnetic
susceptibility, these results are important for any physical property of graphene related to magnetism. Com-
paring our mean-field results with first-principles results we also extract a surprisingly large value of U
indicating that graphene is very close to an antiferromagnetic instability.
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Several novel features of graphene, such as two dimen-
sionality, linear energy dispersion, a tunable chemical poten-
tial by gate voltage, and a high mobility have helped raising
the expectation of graphene being a serious post-silicon era
candidate."? In this context, functionalization of graphene,
especially with magnetic atoms or defects, which also opens
the door to spintronics,’ is of large interest. One of the most
important properties of magnetic impurities is their effective
interaction propagated by the conduction electrons in the
host, the so-called Ruderman-Kittel-Kasuya-Yoshida
(RKKY) coupling.* This coupling is crucial for magnetic or-
dering of impurities but also offers access to the intrinsic
magnetic properties of the host as it is directly proportional
to the magnetic susceptibility. Several studies exist for the
RKKY coupling in graphene, where the standard perturba-
tive approach applied to a continuum field-theoretic descrip-
tion of graphene’”’ and exact diagonalization® have been
shown to give similar results. However, consistently, all de-
tailed treatments have calculated the RKKY coupling using
only noninteracting electrons. This is in spite of growing
evidence for the importance of electron-electron (el-el) inter-
actions in graphene with theoretical results pointing to intrin-
sic graphene being close to a Mott insulating state.”~'! This
thus begs the question if properties such as the RKKY cou-
pling, which are intrinsically linked to the magnetic proper-
ties of graphene, can accurately be described in a noninter-
acting electron picture. In this work we will therefore
investigate the effect of el-el interactions in the RKKY cou-
pling, both in the bulk and in zigzag graphene nanoribbons
(ZGNRs) where the zero-energy edge states'? can signifi-
cantly modify the RKKY behavior.”® Since the 1/r tail of the
Coulomb interaction has been shown to be irrelevant, and
that then a transition to a Mott insulating state is necessarily
driven by short-range interactions,!" we will here study the
influence of el-el interactions within a mean-field treatment
of the Hubbard model. Especially note in this context that the
Mott insulating state has been suggested to be an antiferro-
magnet, just as in the Hubbard model.!! Moreover, the Hub-
bard model has been employed several times before in the
study of magnetic properties in graphene and ZGNRs, and it
has also been shown to yield results consistent with first-
principles density-functional theory (DFT) results.!3-1
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We show below that even for small to moderate strengths
of the el-el interactions, the RKKY coupling in the bulk is
qualitatively modified and gets significantly more long
ranged than in the noninteracting electron picture. For
ZGNRs the effect is even more striking as any finite interac-
tion causes the long-distance RKKY coupling to become dis-
tance independent. We thus conclude that it is imperative to
include el-el interactions when studying the RKKY coupling,
and, by extension, any other properties closely related to the
magnetic properties of graphene.

More specifically, we will use the Hartree-Fock (HF)
mean-field approximation of the one-band Hubbard-U model
for graphene and include magnetic impurity moments, or
spins, S= =Sz which couples to a graphene atom with a
Kondo coupling term Jy,

H=-1 2 (C;-O_Cjo.'i' HC) + UE <n,~U>nl~_U+Jk E Si - S;.

{i.j).o i,o i=imp

(1)

Here c;, (c},) annihilates (creates) an electron at site i with
spin o, {i,j) means nearest neighbors, and s=%cloaﬁcﬂ, with
04 being the Pauli matrices, is the electron spin. The con-
stants entering, apart from J; which depends on the particular
impurity moment, are the nearest-neighbor hopping in
graphene r=2.5 eV and the on-site repulsion U. The value
of U is hard to determine exactly but, depending on the
choice of exchange-correlation potential, U/f=1-2 has been
shown to be consistent with DFT results.'?> Below we are
able to extract U/t=2.1 when comparing the RKKY cou-
pling in a spin chain with DFT results.'® The expectation
value of the spin-resolved electron density n,»o=cfac,-g needs
to be calculated self-consistently in Eq. (1) and gives the
spin-polarization density as s{=(n;;—n; )/2. Before proceed-
ing it is worth noting that we have found that any local
doping induced by the magnetic impurity does not change
the RKKY coupling to any significant degree. Thus our
RKKY results are robust toward the specifics of the magnetic
impurities and the simplified model in Eq. (1) is indeed ap-
propriate even for experimentally realistic systems.
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FIG. 1. (Color online) Dimensionless RKKY coupling |J|t/J; as
a function of impurity distance R in units of the lattice constant
along (a) zigzag and (b) armchair directions for U/t=0, 1, 1.5, 2,
and 2.15 (increasing |J|). A-A sublattice impurities (black, X) has
FM coupling (J44 <0) and A-B sublattice impurities (red, O) has
AFM coupling (J,5>0). Lines are only guides to the eye.

In standard RKKY perturbation theory!” the leading inter-
action between two impurity moments at sites i and j is
given by

Hrgky =J(R)S; - Sj9 (2)

where the effective RKKY coupling constant J is a function
of the impurity-impurity distance R=R;-R; and directly
proportional to the static spin susceptibility of the imbedding
bulk. Here we will instead self-consistently solve Eq. (1) for
two impurity spins in a ferromagnetic (FM) and an antifer-
romagnetic (AFM) configuration, respectively, and then ex-
plicitly calculate the RKKY coupling as the energy differ-
ence between these two configurations: J=[E(FM)
—E(AFM)]/2. More details on our method applied to nonin-
teracting graphene can be found in Ref. 8. We note in passing
that a straightforward application of the random-phase ap-
proximation to the noninteracting spin susceptibility results
in Ref. 5 does not produce a consistent critical coupling for
the AFM Mott insulating state and is therefore not a valid
approach.

Bulk impurities. Figure 1 shows the magnitude of the
RKKY coupling as a function of impurity distance R=|R|
along both the (a) zigzag and (b) armchair directions of the
graphene lattice for several values of U/t. The RKKY cou-
pling in the large R limit for noninteracting graphene is J
«[1+cos(2kp-R)]/|R|* with J=J,,<0 for A-A sublattice
coupling, i.e., for impurities on the same sublattice (black),
and J=J,5>0 and three times larger for A-B (or different)
sublattice coupling (red).>® Here k, is the reciprocal vector
for the Dirac points. Apart from minor deviations at small R,
these results are displayed in the lowest black and red curves
in Fig. 1. The nonoscillatory R dependence for the armchair
direction is a consequence of only sampling the cos function
at the graphene lattice sites. When including el-el interac-
tions these results are, however, qualitatively modified even
for small U. For U/t=1.5 (middle curves) essentially all evi-
dence of the (1+cos) oscillations is gone, as is the factor of
3 difference between A-A and A-B sublattice coupling. Also,
the power-law decay exponent « decreases notably with in-
creasing U. For noninteracting electrons a=3 but « is
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FIG. 2. (Color online) —J for J,=t (black) and J,=7/10 (red) (a)
and (c) as a function of impurity distance R for U/t=0, 1, 1.5, and
2 (increasing —J) and (b) and (d) as a function of U/t for (a) and (b)
A-A edge impurities and (c) and (d) A-A impurities inside a narrow
ZGNR of width W=8/\3a. Dashed lines shows Epy whereas
dashed-dotted lines are equal to J;Ss; with s; being the graphene
polarization at the impurity sites but with the impurities absent.

changed to ~2.3 (2.6) for U/t=1.5 and 1.9 (2.1) for U/t
=2 for the zigzag (armchair) direction. Furthermore, for
U/t>?2 (uppermost curves), the armchair and zigzag RKKY
couplings are equal and thus all lattice specific details, apart
from J,4, <0 and J,5>0, have been washed out for such
values of the el-el interactions. With the mean-field quantum
critical coupling for the AFM insulating state being U/t
=2.23,'8 it is perhaps not surprising that the RKKY coupling
becomes independent of the small length scale details close
to this point. However, what is rather unexpected is that this
“washing” out of the lattice details is clearly present even at
such low values as U/t=1, a value which is very likely lower
than the physical value of U in graphene. This shows that it
is imperative to include el-el interactions when studying the
RKKY interaction in graphene. Without them, not only are
the magnitude of the RKKY coupling grossly underestimated
but, more importantly, the results do not even have a quali-
tatively correct R dependence.

ZGNR impurities. Within the noninteracting electron pic-
ture we recently showed that for impurities along a zigzag
graphene edge (A-A impurities) the RKKY interaction de-
cays exponentially for large R, but that, quite counterintu-
itively, smaller J, gives a longer decay length.® These results
are a consequence of the extreme easiness by which an edge
impurity can polarize the zero-energy edge state present on
the zigzag edge. In contrast, for A-A impurities inside a nar-
row ZGNR bulk properties of the RKKY coupling are
largely regained, notably J OCJ,f/ R3, in the noninteracting
limit. The effect of the edge is thus only limited to edge
impurities in the noninteracting limit. These results are
shown in the two lowest curves in Fig. 2 for impurities (a)
along the edge and (c) inside the ribbon for J;=¢ (black) and
J=1t/10 (red). When including el-el interactions this picture
is dramatically changed. As is well established, any finite U
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is going to spontaneously polarize the edge state!*!° and, by

extension, the whole ribbon,® thus making it harder for an
impurity moment to influence the polarization of the
graphene. The three upper curves in (a) and (c) are for U/t
=1, 1.5, and 2, respectively. As seen, the R dependence com-
pletely disappears for R larger than a few unit cells for any
physically relevant value of U and for all sites in a narrow
ZGNR. The R-independent value of the RKKY coupling is
analyzed as a function of U/t in Figs. 2(b) and 2(d). As in the
bulk, the FM impurity configuration is energetically favored
for A-A impurities in ZGNRs. The AFM configuration on the
other hand will require modification of the spontaneous
graphene polarization to accommodate the impurity moment
with the “wrong” orientation. There are two R-independent
limiting solutions for the AFM configuration of which the
one with lowest energy will give an upper energy bound for
the true AFM solution. The first limiting solution has a mag-
netic domain wall formed between the two AFM-oriented
impurity spins. The magnetic domain-wall formation energy
per edge, Epy, is equal to the RKKY coupling for this lim-
iting solution and its value, calculated within Eq. (1), is dis-
played with a dashed line in Figs. 2(b) and 2(d). This limit-
ing solution is not only independent of R but also of J,
making it especially favorable at high J; values which is also
seen in Fig. 2(b). For smaller J, it is, however, more likely
that the impurity spins do not noticeably change the polar-
ization of the underlying graphene, not even directly at the
impurity site. The limiting solution in this case is the unper-
turbed graphene plus the two impurities and has an energy
2J,Ss; above that of the FM solution. Here s; is the graphene
polarization at the site of the wrongly oriented impurity but
in the absence of the impurities. This unperturbed limiting
solution is also naturally R independent and its RKKY cou-
pling is displayed with dashed-dotted lines in Figs. 2(b) and
2(d). Note that since s5 is significantly lower inside a narrow
ZGNR than on the edge, this solution yields a smaller RKKY
coupling for impurities away from the edge. Also note that s;
depends rather strongly on U, which causes both limiting
solutions to increase sharply with increasing U. The true
RKKY coupling follow the lower of these two limiting solu-
tions remarkably well for all four cases studied in Fig. 2,
including jumping form one to the other around U=0.3¢ for
edge impurities when J;=¢/10. The small deviations from
the unperturbed limiting solution are due to limited impact of
the impurity spins on the graphene polarization which locally
produces small changes in s; in favor of a lower total energy.
The only real notable discrepancy is for edge impurities
when J is large and U moderately small. Here the domain-
wall limiting solution is not followed too closely but the
system lowers its energy slightly by instead creating a local,
half-circle shaped, domain wall around the wrongly oriented
impurity spin. This solution naturally creates a spin imbal-
ance in the system as its domain wall does not propagate to
the opposite edge. Note that both of the limiting solutions
described here are always present, and thus the qualitative
RKKY behavior is the same, in any graphene system which
has a spontaneous polarization in the absence of impurities.
For edge impurities we do not expect the width of the ribbon
to change the RKKY behavior as both the spontaneous edge
polarization and Epy, are weak functions of the ribbon width.
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FIG. 3. (Color online) —J (black, X) for A-A sublattice impuri-
ties chains as a function of impurity distance R along the chains for
U/t=0, 1, 1.5, 1.75, 2.1, and 2.15 (increasing magnitude). DFT
results from Ref. 16 (dashed red, O) are scaled with a factor 0.5.
Inset shows the power-law decay exponent « as a function of U/t
(black, X) with the exponent 1.43 from Ref. 16 indicated with a
dashed red line.

However, for impurities inside a very wide ZGNR the spon-
taneous polarization inside the ribbon is going to be vanish-
ingly small and bulk properties should eventually be restored
for wide ribbons and small J,. We thus conclude that any
finite el-el interaction renders the long-distance RKKY cou-
pling in a narrow ZGNR R independent and linearly depen-
dent on J; for small J, but independent on J; in the limit of
large J,. In addition, el-el interactions make impurities inside
a ZGNR behave similarly to edge impurities, which is com-
pletely opposite to the situation for noninteracting electrons.

Determining U. There exist some DFT results for the
RKKY coupling in graphene!®? but such studies are always
limited to very small R unless chains (or lattices) of impuri-
ties are studied. Figure 3 shows the RKKY coupling for A-A
sublattice impurity chains along the zigzag direction sepa-
rated by a distance of 25 A as a function of the impurity
distance R along the chains. We see that for U=0 (lowest
curve) characteristic noninteracting (1 +cos)-type oscillations
are present but the chain configuration makes the RKKY
coupling somewhat longer ranged than R~3. The oscillations
however quickly disappear and the decay exponent « de-
creases (see inset) with increasing U. DFT results using a
hybrid density functional on the same chain structure is
available in Ref. 16 and these results, scaled with an overall,
unimportant prefactor, are displayed with a dashed red line in
Fig. 3. There are no oscillations in the DFT results and the
exponent « coincides with the results for U/fr=2.1, which
also yields very well-matched results, as indicative in the
main plot. At a first glance, this might seem as a large value
for the Coulomb repulsion in graphene since the mean-field
AFM instability is at U,./t=2.23. However, one should keep
in mind that multiple recent theoretical work have classified
graphene as being very close to, if not even being, an insu-
lator in vacuum due to strong Coulomb interactions.’”'! Our
results point to the fact that this state might be an AFM
insulator which would also be consistent with earlier
results.!! Our extracted value of U also agrees quantitatively
with earlier estimations based on the same functional.'> DFT
calculations instead using the local-density approximation
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(LDA) or general gradient approximation (GGA) have
yielded a somewhat smaller U/t~0.9-1.3.132! It is well
known that LDA suffers from electron self-interaction and
therefore often underestimates U. Hybrid density functionals
on the other hand explicitly contains an element of Fock
exchange and thus tends to handle this deficiency better. This
becomes especially important in strongly correlated systems
but hybrid density functionals can still reproduce the LDA
results for weakly correlated materials. It is here also impor-
tant to keep in mind that the DFT and HF methods are both
mean-field approximations and thus a direct comparison be-
tween them is fully consistent. Results using quantum Monte
Carlo to study the Hubbard model yields a higher U,,?* as
fluctuations are relatively important in two dimensions.
However, while the value of U, increases when going be-
yond mean-field theory, the change in the RKKY coupling is
primarily determined by the closeness to U,, and, thus, we
expect the general features of Figs. 1 and 2 to still be present
in a more accurate treatment.

With such high value of U it is also natural to ask about
other possible electronically driven ordered states. U (AFM)
increases with doping'® and thus undoped graphene is the
strongest candidate for an AFM state. However, with increas-
ing doping electronically driven d-wave superconductivity
caused by spin-singlet nearest-neighbor correlations appears
for any Coulomb interaction.”? Such correlations were al-
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ready proposed by Pauling and others®* for the p7r-bonded
planar organic molecules of which graphene is the infinite
extension. With the Coulomb interaction extracted from the
results in Fig. 3, one would need a chemical doping of u
=1 eV to reach T.(SC)~5 K, a value which might be
achieved with, for example, chemical doping.

Conclusions. In summary we have shown that it is of vital
importance to include el-el interactions when studying the
RKKY coupling in graphene and by extension any property
of graphene related to the magnetic susceptibility. Even rela-
tively weak el-el interactions qualitatively change the RKKY
coupling to be significantly longer ranged and monotonically
decaying in the bulk. In a ZGNR the change is even more
pronounced and the R dependence disappears entirely. By
comparing our mean-field results we have also been able to
extract a surprisingly high value for the el-el interactions,
demonstrating that graphene might be very close to an AFM
insulating instability. With such closeness to an AFM state it
is rather natural that magnetic properties, such as the RKKY
coupling, are going to be heavily influenced by el-el interac-
tions.
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